Clear-column radiative closure during ACE-Asia: Comparison of multiwavelength extinction derived from particle size and composition with results from Sun photometry
نویسندگان
چکیده
[1] From March to May 2001, aerosol size distributions and chemical compositions were measured using differential mobility analyzers (DMA), an aerodynamic particle sizer (APS), Micro-Orifice Uniform Deposit Impactors (MOUDI), and denuder samplers onboard the Twin Otter aircraft as part of the Aerosol Characterization Experiment (ACE)-Asia campaign. Of the 19 research flights, measurements on four flights that represented different aerosol characteristics are analyzed in detail. Clear-column radiative closure is studied by comparing aerosol extinctions predicted using in situ aerosol size distribution and chemical composition measurements to those derived from the 14wavelength NASA Ames Airborne Tracking Sun photometer (AATS-14). In the boundary layer, pollution layers, and free troposphere with no significant mineral dust present, aerosol extinction closure was achieved within the estimated uncertainties over the full range of wavelengths of AATS-14. Aerosol extinctions predicted based on measured size distributions also reproduce the wavelength dependence derived from AATS-14 data. Considering all four flights, the best fit lines yield Predicted/Observed ratios in boundary and pollution layers of 0.97 ± 0.24 and 1.07 ± 0.08 at l = 525 nm and 0.96 ± 0.21 and 1.08 ± 0.08 at l = 1059 nm, respectively. In free troposphere dust layers, aerosol extinctions predicted from the measured size distributions were generally smaller than those derived from the AATS-14 data, with Predicted/Observed ratios of 0.65 ± 0.06 and 0.66 ± 0.05 at 525 and 1059 nm, respectively. A detailed analysis suggests that the discrepancy is likely a result of the lack of the knowledge of mineral dust shape as well as variations in aerosol extinction derived from AATS-14 data when viewing through horizontally inhomogeneous layers.
منابع مشابه
Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements
[1] We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne Sun photometry and derived from airborne in situ and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol exti...
متن کاملPoint and column aerosol radiative closure during ACE 1: Effects of particle shape and size
[1] We used data collected during the First Aerosol Characterization Experiment (ACE 1) to study point and column aerosol radiative closure over the remote ocean. To test point closure, total and hemispheric backscattering coefficients calculated with a Mie singlescattering model were compared with measurements made by ship and aircraft at three wavelengths (400, 550, and 700 nm). On the ship, ...
متن کاملClear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements
We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA...
متن کاملA model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/V Ronald H. Brown data and comparison with observations
[1] Vertical profiles of aerosol size, composition, and hygroscopic behavior from Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter and National Oceanic and Atmospheric Administration R/V Ronald H. Brown observations are used to construct a generic optical model of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) aerosol. The model accou...
متن کاملBNL-66601-00/04-Rev. COMPARISON OF AEROSOL OPTICAL DEPTH INFERRED FROM SURFACE MEASUREMENTS WITH THAT DETERMINED BY SUN PHOTOMETRY FOR CLOUD-FREE CONDITIONS AT A CONTINENTAL U.S. SITE
Evaluation of the forcing of climate by aerosol scattering of shortwave radiation in cloud-free conditions (direct aerosol forcing) requires knowledge of aerosol optical properties on relevant spatial and temporal scales. It is convenient to measure these properties at the surface. However, before these measurements can be used to quantitatively estimate direct climate forcing, it is necessary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002